7 resultados para Mathematical techniques

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The paper reports on the ramifications for production planning when monthly sales exhibit predictable seasonal highs and lows. The literature first acknowledged and dealt with the (aggregate planning) problem 50 years ago. Nevertheless, there is neither evidence that industry has adopted any of the mathematical techniques that were subsequently developed, nor a convincing explanation as to why not. Hence this research sets out to discover the methods manufacturers use to cope with seasonal demand, and how germane the published algorithms really are.

Design/methodology/approach
: Forty-two case studies were compiled by interviewing senior managers and then conducting plant tours. No prior assumptions were made and the list of questions covered the gamut of production planning.

Findings
: The main finding is that manufacturers select a straightforward production strategy, right from the outset, so the fundamental cost-balancing format is not relevant. The majority pick a “chase” strategy, since most organizations subscribe to a “just in time” ethos. Whenever a different strategy is preferred the rationale springs from skilled labour considerations or binding facilities constraints. The chosen strategy serves as a road map for resources acquisitions, and the master production schedule is constructed directly. So, the complex issue of how to disaggregate an optimal aggregate plan never even arises. Managers do not seek perfect solutions, but strive to eliminate, or contain, the most significant marginal costs. The nature of the business determines the most appropriate tactics to employ.

Originality/value: These findings break the mould as far as orthodox aggregate planning is concerned and show why theory is at odds with practice, whilst reaffirming the importance of concepts such as “flexibility”, “integration”, and “just-in-time production”.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we address the problem of unknown input observer design, which simultaneously estimates state and unknown input, of a class of nonlinear discrete-time systems with time-delay. A novel approach to the state estimation problem of nonlinear systems where the nonlinearities satisfy the one-sided Lipschitz and quadratically inner-bounded conditions is proposed. This approach also allows us to reconstruct the unknown inputs of the systems. The nonlinear system is first transformed to a new system which can be decomposed into unknown-input-free and unknown-input-dependent subsystems. The estimation problem is then reduced to designing observer for the unknown-input-free subsystem. Rather than full-order observer design, in this paper, we propose observer design of reduced-order which is more practical and cost effective. By utilizing several mathematical techniques, the time-delay issue as well as the bilinear terms, which often emerge when designing observers for nonlinear discrete-time systems, are handled and less conservative observer synthesis conditions are derived in the linear matrix inequalities form. Two numerical examples are given to show the efficiency and high performance of our results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we address the problem of observer design for a class of nonlinear discrete-time systems in the presence of delays and unknown inputs. The nonlinearities studied in this work satisfy the one-sided Lipschitz and quadratically inner-bounded conditions which are more general than the traditional Lipschitz conditions. Both H∞ observer design and asymptotic observer design with reduced-order are considered. The designs are novel compared to other relevant nonlinear observer designs subject to time delays and disturbances in the literature. In order to deal with the time-delay issue as well as the bilinear terms which usually appear in the problem of designing observers for discrete-time systems, several mathematical techniques are utilized to deduce observer synthesis conditions in the linear matrix inequalities form. A numerical example is given to demonstrate the effectiveness and high performance of our results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we develop a global optimization algorithm for quasiconvex programming where the objective function is a Lipschitz function which may have "flat parts". We adapt the Extended Cutting Angle method to quasiconvex functions, which reduces significantly the number of iterations and objective function evaluations, and consequently the total computing time. Applications of such an algorithm to mathematical programming problems inwhich the objective function is derived from economic systems and location problems are described. Computational results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constructing a monotonicity relating function is important, as many engineering problems revolve around a monotonicity relationship between input(s) and output(s). In this paper, we investigate the use of fuzzy rule interpolation techniques for monotonicity relating fuzzy inference system (FIS). A mathematical derivation on the conditions of an FIS to be monotone is provided. From the derivation, two conditions are necessary. The derivation suggests that the mapped consequence fuzzy set of an FIS to be of a monotonicity order. We further evaluate the use of fuzzy rule interpolation techniques in predicting a consequent associated with an observation according to the monotonicity order. There are several findings in this article. We point out the importance of an ordering criterion in rule selection for a multi-input FIS before the interpolation process; and hence, the practice of choosing the nearest rules may not be true in this case. To fulfill the monotonicity order, we argue with an example that conventional fuzzy rule interpolation techniques that predict each consequence separately is not suitable in this case. We further suggest another class of interpolation techniques that predicts the consequence of a set of observations simultaneously, instead of separately. This can be accomplished with the use of a search algorithm, such as the brute force, genetic algorithm or etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assessment model is a mathematical model that produces a measuring index, either in the form of a numerical score or a category to a situation/object, with respect to the subject of measure. From the numerical score, decision can be made and action can be taken. To allow valid and useful comparisons among various situations/objects according to their associated numerical scores to be made, the monotone output property and the output resolution property are essential in fuzzy inference-based assessment problems. We investigate the conditions for a fuzzy assessment model to fulfill the monotone output property using a derivative approach. A guideline on how the input membership functions should be tuned is also provided. Besides, the output resolution property is defined as the derivative of the output of the assessment model with respect to its input. This derivative should be greater than the minimum resolution required. From the derivative, we suggest improvements to the output resolution property by refining the fuzzy production rules.